Soil NPK three-in-one sensor (RS485)

Ver 2.0

Chapter 1 Product Introduction	1
1.1 Product overview	1
1.2 Functions and features	1
1.3 Main parameters	1
1.4 System framework diagram	2
1.5 Product selection	4
Chapter 2 Hardware Connection	4
2.1 Inspection before equipment installation	4
2.2 Interface description	4
2.2.1 Sensor wiring	4
Chapter 3 How to Use	5
3.1 Quick test method	5
3.2 Buried measurement method	5
3.3 Matters needing attention	6
Chapter 4 Configuration Software Installation and Use	6
4.1 Connect the sensor to the computer	6
4.2 Use of sensor monitoring software	7
Chapter 5 Communication Protocol	8
5.1 Basic communication parameters	8
5.2 Data frame format definition	8
5.3 Register address	9
5.4 Communication protocol example and explanation1	0
Chapter 6 Common Problems and Solutions 1	2

Catalog

Chapter 1 Product Introduction

1.1 Product overview

The soil nitrogen, phosphorus and potassium sensor is suitable for detecting the content of nitrogen, phosphorus and potassium in the soil, and judging the fertility of the soil by detecting the content of nitrogen, phosphorus and potassium in the soil, thereby facilitating the evaluation of the soil condition by the customer system.

1.2 Functions and features

It is widely used in rice fields, greenhouse planting, rice, vegetable planting, orchard nursery, flower and soil research, etc.

1.3 Main parameters

DC power supply (default)	DC 5-30V				
Maximum power consumption	≤0.15W (@12V DC, 25°C)				
Operating temperature	0℃~55℃				
	range	1-1999 mg/kg(mg/L)			
NPK parameters	Resolution	1 mg/kg(mg/L)			
	precise	$\pm 2\%$ FS			
Response time		<18			
Protection level		IP68			
Probe material		stainless steel			
Sealing material]	Black flame-retardant epoxy resin			
Default cable length	2Meters, the cable length can be customized according to requirements				
Shape and size	45*15*123mm				
output signal		RS485(Modbus protocol)			

Shell size

Equipment size drawing (unit: mm)

1.4 System framework diagram

This product can also be used in combination of multiple sensors on a 485 bus. In theory, a bus can be used for 254 485 sensors, and the other end is connected to a PLC with a 485 interface, connect the single-chip microcomputer through the 485 interface chip, or use the USB to 485 to connect to the computer, and use the sensor configuration tool provided by our company for configuration and testing. (only one device can be connected when using the configuration software).

Multiple connections

1.5 Product selection

3000-				
	TR-			Soil detection housing
		N-		Soil nitrogen content transmitter
		P-		Soil phosphorus content transmitter
		К-		Soil potassium content transmitter
		NPK-		Three-in-one transmitter for soil
				nitrogen, phosphorus and potassium
			N01	RS485 (Modbusprotocol)

Chapter 2 Hardware Connection

2.1 Inspection before equipment installation

Equipment List:

Transmitter equipment 1 set

Certificate of conformity, wiring instructions, etc.

2.2 Interface description

The power interface is a wide-voltage power supply, 5v-30V can be input. When wiring the 485 signal wire, pay attention to the two wires A and B that cannot be reversed, and the addresses of multiple devices on the bus cannot be conflicted

2.2.1 Sensor wiring

Thread color	Description	Remarks
brown	Power is positive	5~30V DC
black	Power ground	GND
yellow	485-A	485-A
blue	485-B	485-B

Chapter 3 How to Use

3.1 Quick test method

Select a suitable measurement location, avoid rocks, ensure that the steel needle does not touch hard objects, throw away the surface soil according to the required measurement depth, maintain the original tightness of the soil below, hold the sensor vertically and insert it into the soil. Do not shake left and right, it is recommended to measure multiple times for average value within a small range of a measuring point.

3.2 Buried measurement method

Dig a pit with a diameter of >20cm vertically, insert the transmitter steel needle horizontally into the pit wall at a predetermined depth, and fill the pit tightly. After a period of stability, measurement and measurement can be carried out continuously for several days, months or even longer. recording.

3.3 Matters needing attention

1. All steel needles must be inserted into the soil during measurement.

2. Avoid strong sunlight directly shining on the transmitter and cause the temperature to be too high. Pay attention to lightning protection when using in the field.

3. Do not bend the steel needle violently, pull the lead wire of the transmitter forcefully, and do not hit or hit the transmitter violently.

4. The transmitter's protection level is IP68, and the transmitter can be completely immersed in water.

5. Due to the presence of radio frequency electromagnetic radiation in the air, it is not suitable to stay in the air for a long time with electricity.

Chapter 4 Configuration Software Installation and

Use

Our company provides the supporting "485 parameter configuration software", which can conveniently use the computer to read the parameters of the sensor, and at the same time flexibly modify the device ID and address of the sensor.

Note that you need to ensure that there is only one sensor on the 485 bus when using the software to obtain it automatically.

4.1 Connect the sensor to the computer

After connecting the sensor to the computer through USB to 485 and supplying

power, you can see the correct COM port in the computer (check the COM port in "My Computer—Properties—Device Manager—Port").

Open the data package, select "Debugging Software" --- "485 Parameter Configuration Software", find and open it.

If the COM port is not found in the device manager, it means that you have not installed the USB to 485 driver (included in the data package) or the driver has not been installed correctly, please contact a technician for help.

4.2 Use of sensor monitoring software

①. The configuration interface is shown in the figure. First, obtain the serial port number according to the method in chapter 3.1 and select the correct serial port.

2. Click the test baud rate of the software, the software will test the baud rate and address of the current device, the default baud rate is 4800bit/s, and the default address is 0x01.

③. Modify the address and baud rate according to the needs of use, and at the same time, you can query the current function status of the device.

④. If the test is unsuccessful, please recheck the equipment wiring and 485 driver installation.

Note: The device address of the test result: 1;Baud rate: 4800

Chapter 5 Communication Protocol

Code	8-bit binary
Data bit	8-bit
Parity bit	Do not
Stop bit	1 digit
Error checking	CRC (Redundant Cyclic Code)
Baud rate	Can be set to 2400bit/s, 4800bit/s, 9600bit/s, the factory default value is 4800bit/s

5.1 Basic communication parameters

5.2 Data frame format definition

Using Modbus-RTU communication protocol, the format is as follows:

Initial structure \geq 4 bytes of time

Address code = 1 byte

Function code = 1 byte

Data area = N bytes

Error check = 16-bit CRC code

Time to end structure \geq 4 bytes

Address code: the address of the transmitter,

which is unique in the communication network (factory default 0x01).

Function code: The command function instruction issued by the host,

this transmitter only uses function code 0x03 (read register data).

Data area: The data area is the specific communication data,

pay attention to the high byte of the 16bits data first!

CRC code: two-byte check code.

Host query frame structure:

address	function	Register start	Register	Check code	High bit of check code
code	code	address	length	low bit	
1 byte	1 byte	2 byte	2 byte	1 byte	1 byte

Slave machine response frame structure:

address	function	Number of	First data	Second data	Nth data	Check code
code	code	valid bytes	area	area	area	
1 byte	1 byte	1 byte	2 byte	2 byte	2 byte	2 byte

5.3 Register address

Register address	PLC or configuration address	Content	Operation	Definition description	
001E H	40031 (Decimal)	Nitrogen content	Read only	Real-time value of nitrogen content	
001F H	40032 (Decimal)	Phosphorus content	Read only	Real-time value of phosphorus content	
0020 H	40033 (Decimal)	Potassium content	Read only	Potassium content real-time value	
03E8 H	41001 (Decimal)	Sixteen higher nitrogen content coefficient	Read and write	actual value	
03E9 H	41002 (Decimal)	Sixteen lower nitrogen content coefficient	Read and write	(IEEE754 standard floating point type)	
03EA H	41003 (Decimal)	Nitrogen content calibration value	Read and write	Integer	
03F2 H	41011 (Decimal)	Sixteen higher phosphorus content coefficient	Read and write	Real value (IEEE754 standard floating	
03F3 H	41012	Sixteen lower	Read and	point type)	

	(Decimal)	phosphorus	write	
		content coefficient		
03F4 H	41013 (Decimal)	Phosphorus content calibration value	Read and write	Integer
03FC H	41021 (Decimal)	Sixteen higher potassium content coefficient	Read and write	Real value (IEEE754
03FD H	41022 (Decimal)	Sixteen lower potassium content coefficient	Read and write	point type)
03FE H	41023 (Decimal)	Potassium content calibration value	Read and write	Integer
07D0 H	42001 (Decimal)	Device address	Read and write	1~254 (factory default 1)
07D1 H	42002 (Decimal)	Device baud rate	Read and write	0 means 2400 1 means 4800 2 means 9600

5.4 Communication protocol example and explanation

5.4.1 Example: Read the real-time value of the nitrogen content of the device address 0x01

Interrogation frame

address c	function	starting	Data length	Check code	High bit of
ode	code	address		low bit	check code
0x01	0x03	0x00 0x1E	0x00 0x01	0xE4	0x0C

Response frame

address code	function code	Returns the number of valid bytes	Nitrogen content	Check code low byte	Check code high byte
0x01	0x03	0x02	0x00 0x20	0xB9	0x9C

Calculation of nitrogen content:

Nitrogen content: 0020 H (hexadecimal) = 32 => Nitrogen = 32mg/kg

5.4.2 Example: Read the real-time value of the phosphorus content of the device address 0x01

address	function	starting	Data length	Check code	High bit of
code	code	address		low bit	check code
0x01	0x03	0x00 0x1F	0x00 0x01	0xB5	0xCC

Interrogation frame

Response frame

address code	function code	Returns the number of valid bytes	Phosphorus content	Check code lo w byte	Check code high byte
0x01	0x03	0x02	0x00 0x25	0x79	0x9F

Phosphorus content calculation:

Phosphorus content: 0025 H (hexadecimal) = 37 => Phosphorus = 37mg/kg

5.4.3 Example: Read the real-time value of potassium content of device address 0x01

Interrogation frame

address code	function code	starting address	Data length	Check code low bit	High bit of check code
0x01	0x03	0x00 0x20	0x00 0x01	0x85	0xC0

Response frame

address code	function code	Returns the number of valid bytes	Potassium c ontent	Check code low byte	Check code high byte
0x01	0x03	0x02	0x00 0x30	0xB8	0x50

Potassium content calculation:

Potassium content: 0030 H (hexadecimal) = 48 => potassium = 48mg/kg

Chapter 6 Common Problems and Solutions

No output or output error

possible reason:

- ① The computer has a COM port, and the selected port is incorrect.
- (2) The baud rate is wrong.
- ③ The 485 bus is disconnected, or the A and B wires are reversed.
- ④ If the number of equipment is too much or the wiring is too long, power

supply should be nearby, add 485 booster, and add 120Ω terminal resistance.

- (5) The USB to 485 driver is not installed or damaged.
- 6 Equipment damage.